Comparison with other tools
Comparison with R / R libraries
Since pandas
aims to provide a lot of the data manipulation and analysis functionality that people use R for, this page was started to provide a more detailed look at the R language and its many third party libraries as they relate to pandas
. In comparisons with R and CRAN libraries, we care about the following things:
- Functionality / flexibility: what can/cannot be done with each tool
- Performance: how fast are operations. Hard numbers/benchmarks are preferable
- Ease-of-use: Is one tool easier/harder to use (you may have to be the judge of this, given side-by-side code comparisons)
This page is also here to offer a bit of a translation guide for users of these R packages.
For transfer of DataFrame
objects from pandas
to R, one option is to use HDF5 files, see External Compatibility for an example.
Quick Reference
We’ll start off with a quick reference guide pairing some common R operations using dplyr with pandas equivalents.
Querying, Filtering, Sampling
R | pandas |
---|---|
dim(df) | df.shape |
head(df) | df.head() |
slice(df, 1:10) | df.iloc[:9] |
filter(df, col1 == 1, col2 == 1) | df.query('col1 == 1 & col2 == 1') |
df[df$col1 == 1 & df$col2 == 1,] | df[(df.col1 == 1) & (df.col2 == 1)] |
select(df, col1, col2) | df[['col1', 'col2']] |
select(df, col1:col3) | df.loc[:, 'col1':'col3'] |
select(df, -(col1:col3)) | df.drop(cols_to_drop, axis=1) but see [1] |
distinct(select(df, col1)) | df[['col1']].drop_duplicates() |
distinct(select(df, col1, col2)) | df[['col1', 'col2']].drop_duplicates() |
sample_n(df, 10) | df.sample(n=10) |
sample_frac(df, 0.01) | df.sample(frac=0.01) |
TIP
[1] | R’s shorthand for a subrange of columns (select(df, col1:col3)
) can be approached cleanly in pandas, if you have the list of columns, for example df[cols[1:3]]
or df.drop(cols[1:3])
, but doing this by column name is a bit messy.
Sorting
R | pandas |
---|---|
arrange(df, col1, col2) | df.sort_values(['col1', 'col2']) |
arrange(df, desc(col1)) | df.sort_values('col1', ascending=False) |
Transforming
R | pandas |
---|---|
select(df, col_one = col1) | df.rename(columns={'col1': 'col_one'})['col_one'] |
rename(df, col_one = col1) | df.rename(columns={'col1': 'col_one'}) |
mutate(df, c=a-b) | df.assign(c=df.a-df.b) |
Grouping and Summarizing
R | pandas |
---|---|
summary(df) | df.describe() |
gdf <- group_by(df, col1) | gdf = df.groupby('col1') |
summarise(gdf, avg=mean(col1, na.rm=TRUE)) | df.groupby('col1').agg({'col1': 'mean'}) |
summarise(gdf, total=sum(col1)) | df.groupby('col1').sum() |
Base R
c
Slicing with R’sR makes it easy to access data.frame
columns by name
df <- data.frame(a=rnorm(5), b=rnorm(5), c=rnorm(5), d=rnorm(5), e=rnorm(5))
df[, c("a", "c", "e")]
or by integer location
df <- data.frame(matrix(rnorm(1000), ncol=100))
df[, c(1:10, 25:30, 40, 50:100)]
Selecting multiple columns by name in pandas
is straightforward
In [1]: df = pd.DataFrame(np.random.randn(10, 3), columns=list('abc'))
In [2]: df[['a', 'c']]
Out[2]:
a c
0 0.469112 -1.509059
1 -1.135632 -0.173215
2 0.119209 -0.861849
3 -2.104569 1.071804
4 0.721555 -1.039575
5 0.271860 0.567020
6 0.276232 -0.673690
7 0.113648 0.524988
8 0.404705 -1.715002
9 -1.039268 -1.157892
In [3]: df.loc[:, ['a', 'c']]
Out[3]:
a c
0 0.469112 -1.509059
1 -1.135632 -0.173215
2 0.119209 -0.861849
3 -2.104569 1.071804
4 0.721555 -1.039575
5 0.271860 0.567020
6 0.276232 -0.673690
7 0.113648 0.524988
8 0.404705 -1.715002
9 -1.039268 -1.157892
Selecting multiple noncontiguous columns by integer location can be achieved with a combination of the iloc
indexer attribute and numpy.r_
.
In [4]: named = list('abcdefg')
In [5]: n = 30
In [6]: columns = named + np.arange(len(named), n).tolist()
In [7]: df = pd.DataFrame(np.random.randn(n, n), columns=columns)
In [8]: df.iloc[:, np.r_[:10, 24:30]]
Out[8]:
a b c d e f g 7 8 9 24 25 26 27 28 29
0 -1.344312 0.844885 1.075770 -0.109050 1.643563 -1.469388 0.357021 -0.674600 -1.776904 -0.968914 -1.170299 -0.226169 0.410835 0.813850 0.132003 -0.827317
1 -0.076467 -1.187678 1.130127 -1.436737 -1.413681 1.607920 1.024180 0.569605 0.875906 -2.211372 0.959726 -1.110336 -0.619976 0.149748 -0.732339 0.687738
2 0.176444 0.403310 -0.154951 0.301624 -2.179861 -1.369849 -0.954208 1.462696 -1.743161 -0.826591 0.084844 0.432390 1.519970 -0.493662 0.600178 0.274230
3 0.132885 -0.023688 2.410179 1.450520 0.206053 -0.251905 -2.213588 1.063327 1.266143 0.299368 -2.484478 -0.281461 0.030711 0.109121 1.126203 -0.977349
4 1.474071 -0.064034 -1.282782 0.781836 -1.071357 0.441153 2.353925 0.583787 0.221471 -0.744471 -1.197071 -1.066969 -0.303421 -0.858447 0.306996 -0.028665
5 0.384316 1.574159 1.588931 0.476720 0.473424 -0.242861 -0.014805 -0.284319 0.650776 -1.461665 -0.902937 0.068159 -0.057873 -0.368204 -1.144073 0.861209
6 0.800193 0.782098 -1.069094 -1.099248 0.255269 0.009750 0.661084 0.379319 -0.008434 1.952541 0.604603 2.121453 0.597701 0.563700 0.967661 -1.057909
.. ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
23 1.534417 -1.374226 -0.367477 0.782551 1.356489 0.981552 0.304501 0.354041 -1.232756 -0.267074 0.641606 -1.690959 0.961088 0.052372 1.166439 0.407281
24 0.859275 -0.995910 0.261263 1.783442 0.380989 2.289726 0.309489 2.189028 1.389045 -0.873585 -0.169076 0.840316 0.638172 0.890673 -1.949397 -0.003437
25 1.492125 -0.068190 0.681456 1.221829 -0.434352 1.204815 -0.195612 1.251683 -1.040389 -0.796211 1.944517 0.042344 -0.307904 0.428572 0.880609 0.487645
26 0.725238 0.624607 -0.141185 -0.143948 -0.328162 2.095086 -0.608888 -0.926422 1.872601 -2.513465 -0.846188 1.190624 0.778507 1.008500 1.424017 0.717110
27 1.262419 1.950057 0.301038 -0.933858 0.814946 0.181439 -0.110015 -2.364638 -1.584814 0.307941 -1.341814 0.334281 -0.162227 1.007824 2.826008 1.458383
28 -1.585746 -0.899734 0.921494 -0.211762 -0.059182 0.058308 0.915377 -0.696321 0.150664 -3.060395 0.403620 -0.026602 -0.240481 0.577223 -1.088417 0.326687
29 -0.986248 0.169729 -1.158091 1.019673 0.646039 0.917399 -0.010435 0.366366 0.922729 0.869610 -1.209247 -0.671466 0.332872 -2.013086 -1.602549 0.333109
[30 rows x 16 columns]
aggregate
In R you may want to split data into subsets and compute the mean for each. Using a data.frame called df
and splitting it into groups by1
and by2
:
df <- data.frame(
v1 = c(1,3,5,7,8,3,5,NA,4,5,7,9),
v2 = c(11,33,55,77,88,33,55,NA,44,55,77,99),
by1 = c("red", "blue", 1, 2, NA, "big", 1, 2, "red", 1, NA, 12),
by2 = c("wet", "dry", 99, 95, NA, "damp", 95, 99, "red", 99, NA, NA))
aggregate(x=df[, c("v1", "v2")], by=list(mydf2$by1, mydf2$by2), FUN = mean)
The groupby() method is similar to base R aggregate
function.
In [9]: df = pd.DataFrame(
...: {'v1': [1, 3, 5, 7, 8, 3, 5, np.nan, 4, 5, 7, 9],
...: 'v2': [11, 33, 55, 77, 88, 33, 55, np.nan, 44, 55, 77, 99],
...: 'by1': ["red", "blue", 1, 2, np.nan, "big", 1, 2, "red", 1, np.nan, 12],
...: 'by2': ["wet", "dry", 99, 95, np.nan, "damp", 95, 99, "red", 99, np.nan,
...: np.nan]})
...:
In [10]: g = df.groupby(['by1', 'by2'])
In [11]: g[['v1', 'v2']].mean()
Out[11]:
v1 v2
by1 by2
1 95 5.0 55.0
99 5.0 55.0
2 95 7.0 77.0
99 NaN NaN
big damp 3.0 33.0
blue dry 3.0 33.0
red red 4.0 44.0
wet 1.0 11.0
For more details and examples see the groupby documentation.
match / %in%
A common way to select data in R is using %in%
which is defined using the function match
. The operator %in%
is used to return a logical vector indicating if there is a match or not:
s <- 0:4
s %in% c(2,4)
The isin() method is similar to R %in%
operator:
In [12]: s = pd.Series(np.arange(5), dtype=np.float32)
In [13]: s.isin([2, 4])
Out[13]:
0 False
1 False
2 True
3 False
4 True
dtype: bool
The match
function returns a vector of the positions of matches of its first argument in its second:
s <- 0:4
match(s, c(2,4))
For more details and examples see the reshaping documentation.
tapply
tapply
is similar to aggregate
, but data can be in a ragged array, since the subclass sizes are possibly irregular. Using a data.frame called baseball
, and retrieving information based on the array team
:
baseball <-
data.frame(team = gl(5, 5,
labels = paste("Team", LETTERS[1:5])),
player = sample(letters, 25),
batting.average = runif(25, .200, .400))
tapply(baseball$batting.average, baseball.example$team,
max)
In pandas
we may use pivot_table() method to handle this:
In [14]: import random
In [15]: import string
In [16]: baseball = pd.DataFrame(
....: {'team': ["team %d" % (x + 1) for x in range(5)] * 5,
....: 'player': random.sample(list(string.ascii_lowercase), 25),
....: 'batting avg': np.random.uniform(.200, .400, 25)})
....:
In [17]: baseball.pivot_table(values='batting avg', columns='team', aggfunc=np.max)
Out[17]:
team team 1 team 2 team 3 team 4 team 5
batting avg 0.352134 0.295327 0.397191 0.394457 0.396194
For more details and examples see the reshaping documentation.
subset
The query() method is similar to the base R subset
function. In R you might want to get the rows of a data.frame
where one column’s values are less than another column’s values:
df <- data.frame(a=rnorm(10), b=rnorm(10))
subset(df, a <= b)
df[df$a <= df$b,] # note the comma
In pandas
, there are a few ways to perform subsetting. You can use query() or pass an expression as if it were an index/slice as well as standard boolean indexing:
In [18]: df = pd.DataFrame({'a': np.random.randn(10), 'b': np.random.randn(10)})
In [19]: df.query('a <= b')
Out[19]:
a b
1 0.174950 0.552887
2 -0.023167 0.148084
3 -0.495291 -0.300218
4 -0.860736 0.197378
5 -1.134146 1.720780
7 -0.290098 0.083515
8 0.238636 0.946550
In [20]: df[df.a <= df.b]
Out[20]:
a b
1 0.174950 0.552887
2 -0.023167 0.148084
3 -0.495291 -0.300218
4 -0.860736 0.197378
5 -1.134146 1.720780
7 -0.290098 0.083515
8 0.238636 0.946550
In [21]: df.loc[df.a <= df.b]
Out[21]:
a b
1 0.174950 0.552887
2 -0.023167 0.148084
3 -0.495291 -0.300218
4 -0.860736 0.197378
5 -1.134146 1.720780
7 -0.290098 0.083515
8 0.238636 0.946550
For more details and examples see the query documentation.
with
An expression using a data.frame called df
in R with the columns a
and b
would be evaluated using with
like so:
df <- data.frame(a=rnorm(10), b=rnorm(10))
with(df, a + b)
df$a + df$b # same as the previous expression
In pandas
the equivalent expression, using the eval() method, would be:
In [22]: df = pd.DataFrame({'a': np.random.randn(10), 'b': np.random.randn(10)})
In [23]: df.eval('a + b')
Out[23]:
0 -0.091430
1 -2.483890
2 -0.252728
3 -0.626444
4 -0.261740
5 2.149503
6 -0.332214
7 0.799331
8 -2.377245
9 2.104677
dtype: float64
In [24]: df.a + df.b # same as the previous expression
Out[24]:
0 -0.091430
1 -2.483890
2 -0.252728
3 -0.626444
4 -0.261740
5 2.149503
6 -0.332214
7 0.799331
8 -2.377245
9 2.104677
dtype: float64
In certain cases eval() will be much faster than evaluation in pure Python. For more details and examples see the eval documentation.
plyr
plyr
is an R library for the split-apply-combine strategy for data analysis. The functions revolve around three data structures in R, a
for arrays
, l
for lists
, and d
for data.frame
. The table below shows how these data structures could be mapped in Python.
R | Python |
---|---|
array | list |
lists | dictionary or list of objects |
data.frame | dataframe |
ddply
An expression using a data.frame called df
in R where you want to summarize x
by month
:
require(plyr)
df <- data.frame(
x = runif(120, 1, 168),
y = runif(120, 7, 334),
z = runif(120, 1.7, 20.7),
month = rep(c(5,6,7,8),30),
week = sample(1:4, 120, TRUE)
)
ddply(df, .(month, week), summarize,
mean = round(mean(x), 2),
sd = round(sd(x), 2))
In pandas
the equivalent expression, using the groupby() method, would be:
In [25]: df = pd.DataFrame({'x': np.random.uniform(1., 168., 120),
....: 'y': np.random.uniform(7., 334., 120),
....: 'z': np.random.uniform(1.7, 20.7, 120),
....: 'month': [5, 6, 7, 8] * 30,
....: 'week': np.random.randint(1, 4, 120)})
....:
In [26]: grouped = df.groupby(['month', 'week'])
In [27]: grouped['x'].agg([np.mean, np.std])
Out[27]:
mean std
month week
5 1 63.653367 40.601965
2 78.126605 53.342400
3 92.091886 57.630110
6 1 81.747070 54.339218
2 70.971205 54.687287
3 100.968344 54.010081
7 1 61.576332 38.844274
2 61.733510 48.209013
3 71.688795 37.595638
8 1 62.741922 34.618153
2 91.774627 49.790202
3 73.936856 60.773900
For more details and examples see the groupby documentation.
reshape / reshape2
melt.array
An expression using a 3 dimensional array called a in R where you want to melt it into a data.frame:
a <- array(c(1:23, NA), c(2,3,4))
data.frame(melt(a))
In Python, since a is a list, you can simply use list comprehension.
In [28]: a = np.array(list(range(1, 24)) + [np.NAN]).reshape(2, 3, 4)
In [29]: pd.DataFrame([tuple(list(x) + [val]) for x, val in np.ndenumerate(a)])
Out[29]:
0 1 2 3
0 0 0 0 1.0
1 0 0 1 2.0
2 0 0 2 3.0
3 0 0 3 4.0
4 0 1 0 5.0
5 0 1 1 6.0
6 0 1 2 7.0
.. .. .. .. ...
17 1 1 1 18.0
18 1 1 2 19.0
19 1 1 3 20.0
20 1 2 0 21.0
21 1 2 1 22.0
22 1 2 2 23.0
23 1 2 3 NaN
[24 rows x 4 columns]
melt.list
An expression using a list called a
in R where you want to melt it into a data.frame:
a <- as.list(c(1:4, NA))
data.frame(melt(a))
In Python, this list would be a list of tuples, so DataFrame() method would convert it to a dataframe as required.
In [30]: a = list(enumerate(list(range(1, 5)) + [np.NAN]))
In [31]: pd.DataFrame(a)
Out[31]:
0 1
0 0 1.0
1 1 2.0
2 2 3.0
3 3 4.0
4 4 NaN
For more details and examples see the Into to Data Structures documentation.
melt.data.frame
An expression using a data.frame called cheese
in R where you want to reshape the data.frame:
cheese <- data.frame(
first = c('John', 'Mary'),
last = c('Doe', 'Bo'),
height = c(5.5, 6.0),
weight = c(130, 150)
)
melt(cheese, id=c("first", "last"))
In Python, the melt() method is the R equivalent:
In [32]: cheese = pd.DataFrame({'first': ['John', 'Mary'],
....: 'last': ['Doe', 'Bo'],
....: 'height': [5.5, 6.0],
....: 'weight': [130, 150]})
....:
In [33]: pd.melt(cheese, id_vars=['first', 'last'])
Out[33]:
first last variable value
0 John Doe height 5.5
1 Mary Bo height 6.0
2 John Doe weight 130.0
3 Mary Bo weight 150.0
In [34]: cheese.set_index(['first', 'last']).stack() # alternative way
Out[34]:
first last
John Doe height 5.5
weight 130.0
Mary Bo height 6.0
weight 150.0
dtype: float64
For more details and examples see the reshaping documentation.
cast
In R acast
is an expression using a data.frame called df in R to cast into a higher dimensional array:
df <- data.frame(
x = runif(12, 1, 168),
y = runif(12, 7, 334),
z = runif(12, 1.7, 20.7),
month = rep(c(5,6,7),4),
week = rep(c(1,2), 6)
)
mdf <- melt(df, id=c("month", "week"))
acast(mdf, week ~ month ~ variable, mean)
In Python the best way is to make use of pivot_table():
In [35]: df = pd.DataFrame({'x': np.random.uniform(1., 168., 12),
....: 'y': np.random.uniform(7., 334., 12),
....: 'z': np.random.uniform(1.7, 20.7, 12),
....: 'month': [5, 6, 7] * 4,
....: 'week': [1, 2] * 6})
....:
In [36]: mdf = pd.melt(df, id_vars=['month', 'week'])
In [37]: pd.pivot_table(mdf, values='value', index=['variable', 'week'],
....: columns=['month'], aggfunc=np.mean)
....:
Out[37]:
month 5 6 7
variable week
x 1 93.888747 98.762034 55.219673
2 94.391427 38.112932 83.942781
y 1 94.306912 279.454811 227.840449
2 87.392662 193.028166 173.899260
z 1 11.016009 10.079307 16.170549
2 8.476111 17.638509 19.003494
Similarly for dcast
which uses a data.frame called df
in R to aggregate information based on Animal
and FeedType
:
df <- data.frame(
Animal = c('Animal1', 'Animal2', 'Animal3', 'Animal2', 'Animal1',
'Animal2', 'Animal3'),
FeedType = c('A', 'B', 'A', 'A', 'B', 'B', 'A'),
Amount = c(10, 7, 4, 2, 5, 6, 2)
)
dcast(df, Animal ~ FeedType, sum, fill=NaN)
# Alternative method using base R
with(df, tapply(Amount, list(Animal, FeedType), sum))
Python can approach this in two different ways. Firstly, similar to above using pivot_table():
In [38]: df = pd.DataFrame({
....: 'Animal': ['Animal1', 'Animal2', 'Animal3', 'Animal2', 'Animal1',
....: 'Animal2', 'Animal3'],
....: 'FeedType': ['A', 'B', 'A', 'A', 'B', 'B', 'A'],
....: 'Amount': [10, 7, 4, 2, 5, 6, 2],
....: })
....:
In [39]: df.pivot_table(values='Amount', index='Animal', columns='FeedType',
....: aggfunc='sum')
....:
Out[39]:
FeedType A B
Animal
Animal1 10.0 5.0
Animal2 2.0 13.0
Animal3 6.0 NaN
The second approach is to use the groupby() method:
In [40]: df.groupby(['Animal', 'FeedType'])['Amount'].sum()
Out[40]:
Animal FeedType
Animal1 A 10
B 5
Animal2 A 2
B 13
Animal3 A 6
Name: Amount, dtype: int64
For more details and examples see the reshaping documentation or the groupby documentation.
factor
pandas has a data type for categorical data.
cut(c(1,2,3,4,5,6), 3)
factor(c(1,2,3,2,2,3))
In pandas this is accomplished with pd.cut
and astype("category")
:
In [41]: pd.cut(pd.Series([1, 2, 3, 4, 5, 6]), 3)
Out[41]:
0 (0.995, 2.667]
1 (0.995, 2.667]
2 (2.667, 4.333]
3 (2.667, 4.333]
4 (4.333, 6.0]
5 (4.333, 6.0]
dtype: category
Categories (3, interval[float64]): [(0.995, 2.667] < (2.667, 4.333] < (4.333, 6.0]]
In [42]: pd.Series([1, 2, 3, 2, 2, 3]).astype("category")
Out[42]:
0 1
1 2
2 3
3 2
4 2
5 3
dtype: category
Categories (3, int64): [1, 2, 3]
For more details and examples see categorical introduction and the API documentation. There is also a documentation regarding the differences to R’s factor.
Comparison with SQL
Since many potential pandas users have some familiarity with SQL, this page is meant to provide some examples of how various SQL operations would be performed using pandas.
If you’re new to pandas, you might want to first read through 10 Minutes to pandas to familiarize yourself with the library.
As is customary, we import pandas and NumPy as follows:
In [1]: import pandas as pd
In [2]: import numpy as np
Most of the examples will utilize the tips
dataset found within pandas tests. We’ll read the data into a DataFrame called tips and assume we have a database table of the same name and structure.
In [3]: url = ('https://raw.github.com/pandas-dev'
...: '/pandas/master/pandas/tests/data/tips.csv')
...:
In [4]: tips = pd.read_csv(url)
In [5]: tips.head()
Out[5]:
total_bill tip sex smoker day time size
0 16.99 1.01 Female No Sun Dinner 2
1 10.34 1.66 Male No Sun Dinner 3
2 21.01 3.50 Male No Sun Dinner 3
3 23.68 3.31 Male No Sun Dinner 2
4 24.59 3.61 Female No Sun Dinner 4
SELECT
In SQL, selection is done using a comma-separated list of columns you’d like to select (or a * to select all columns):
SELECT total_bill, tip, smoker, time
FROM tips
LIMIT 5;
With pandas, column selection is done by passing a list of column names to your DataFrame:
In [6]: tips[['total_bill', 'tip', 'smoker', 'time']].head(5)
Out[6]:
total_bill tip smoker time
0 16.99 1.01 No Dinner
1 10.34 1.66 No Dinner
2 21.01 3.50 No Dinner
3 23.68 3.31 No Dinner
4 24.59 3.61 No Dinner
Calling the DataFrame without the list of column names would display all columns (akin to SQL’s *).
WHERE
Filtering in SQL is done via a WHERE clause.
SELECT *
FROM tips
WHERE time = 'Dinner'
LIMIT 5;
DataFrames can be filtered in multiple ways; the most intuitive of which is using boolean indexing.
In [7]: tips[tips['time'] == 'Dinner'].head(5)
Out[7]:
total_bill tip sex smoker day time size
0 16.99 1.01 Female No Sun Dinner 2
1 10.34 1.66 Male No Sun Dinner 3
2 21.01 3.50 Male No Sun Dinner 3
3 23.68 3.31 Male No Sun Dinner 2
4 24.59 3.61 Female No Sun Dinner 4
The above statement is simply passing a Series
of True/False objects to the DataFrame, returning all rows with True.
In [8]: is_dinner = tips['time'] == 'Dinner'
In [9]: is_dinner.value_counts()
Out[9]:
True 176
False 68
Name: time, dtype: int64
In [10]: tips[is_dinner].head(5)
Out[10]:
total_bill tip sex smoker day time size
0 16.99 1.01 Female No Sun Dinner 2
1 10.34 1.66 Male No Sun Dinner 3
2 21.01 3.50 Male No Sun Dinner 3
3 23.68 3.31 Male No Sun Dinner 2
4 24.59 3.61 Female No Sun Dinner 4
Just like SQL’s OR and AND, multiple conditions can be passed to a DataFrame using | (OR) and & (AND).
-- tips of more than $5.00 at Dinner meals
SELECT *
FROM tips
WHERE time = 'Dinner' AND tip > 5.00;
# tips of more than $5.00 at Dinner meals
In [11]: tips[(tips['time'] == 'Dinner') & (tips['tip'] > 5.00)]
Out[11]:
total_bill tip sex smoker day time size
23 39.42 7.58 Male No Sat Dinner 4
44 30.40 5.60 Male No Sun Dinner 4
47 32.40 6.00 Male No Sun Dinner 4
52 34.81 5.20 Female No Sun Dinner 4
59 48.27 6.73 Male No Sat Dinner 4
116 29.93 5.07 Male No Sun Dinner 4
155 29.85 5.14 Female No Sun Dinner 5
170 50.81 10.00 Male Yes Sat Dinner 3
172 7.25 5.15 Male Yes Sun Dinner 2
181 23.33 5.65 Male Yes Sun Dinner 2
183 23.17 6.50 Male Yes Sun Dinner 4
211 25.89 5.16 Male Yes Sat Dinner 4
212 48.33 9.00 Male No Sat Dinner 4
214 28.17 6.50 Female Yes Sat Dinner 3
239 29.03 5.92 Male No Sat Dinner 3
-- tips by parties of at least 5 diners OR bill total was more than $45
SELECT *
FROM tips
WHERE size >= 5 OR total_bill > 45;
# tips by parties of at least 5 diners OR bill total was more than $45
In [12]: tips[(tips['size'] >= 5) | (tips['total_bill'] > 45)]
Out[12]:
total_bill tip sex smoker day time size
59 48.27 6.73 Male No Sat Dinner 4
125 29.80 4.20 Female No Thur Lunch 6
141 34.30 6.70 Male No Thur Lunch 6
142 41.19 5.00 Male No Thur Lunch 5
143 27.05 5.00 Female No Thur Lunch 6
155 29.85 5.14 Female No Sun Dinner 5
156 48.17 5.00 Male No Sun Dinner 6
170 50.81 10.00 Male Yes Sat Dinner 3
182 45.35 3.50 Male Yes Sun Dinner 3
185 20.69 5.00 Male No Sun Dinner 5
187 30.46 2.00 Male Yes Sun Dinner 5
212 48.33 9.00 Male No Sat Dinner 4
216 28.15 3.00 Male Yes Sat Dinner 5
NULL checking is done using the notna() and isna() methods.
In [13]: frame = pd.DataFrame({'col1': ['A', 'B', np.NaN, 'C', 'D'],
....: 'col2': ['F', np.NaN, 'G', 'H', 'I']})
....:
In [14]: frame
Out[14]:
col1 col2
0 A F
1 B NaN
2 NaN G
3 C H
4 D I
Assume we have a table of the same structure as our DataFrame above. We can see only the records where col2
IS NULL with the following query:
SELECT *
FROM frame
WHERE col2 IS NULL;
In [15]: frame[frame['col2'].isna()]
Out[15]:
col1 col2
1 B NaN
Getting items where col1
IS NOT NULL can be done with notna().
SELECT *
FROM frame
WHERE col1 IS NOT NULL;
In [16]: frame[frame['col1'].notna()]
Out[16]:
col1 col2
0 A F
1 B NaN
3 C H
4 D I
GROUP BY
In pandas, SQL’s GROUP BY operations are performed using the similarly named groupby() method. groupby() typically refers to a process where we’d like to split a dataset into groups, apply some function (typically aggregation) , and then combine the groups together.
A common SQL operation would be getting the count of records in each group throughout a dataset. For instance, a query getting us the number of tips left by sex:
SELECT sex, count(*)
FROM tips
GROUP BY sex;
/*
Female 87
Male 157
*/
The pandas equivalent would be:
In [17]: tips.groupby('sex').size()
Out[17]:
sex
Female 87
Male 157
dtype: int64
Notice that in the pandas code we used size() and not count(). This is because count() applies the function to each column, returning the number of not null records within each.
In [18]: tips.groupby('sex').count()
Out[18]:
total_bill tip smoker day time size
sex
Female 87 87 87 87 87 87
Male 157 157 157 157 157 157
Alternatively, we could have applied the count() method to an individual column:
In [19]: tips.groupby('sex')['total_bill'].count()
Out[19]:
sex
Female 87
Male 157
Name: total_bill, dtype: int64
Multiple functions can also be applied at once. For instance, say we’d like to see how tip amount differs by day of the week - agg()
allows you to pass a dictionary to your grouped DataFrame, indicating which functions to apply to specific columns.
SELECT day, AVG(tip), COUNT(*)
FROM tips
GROUP BY day;
/*
Fri 2.734737 19
Sat 2.993103 87
Sun 3.255132 76
Thur 2.771452 62
*/
In [20]: tips.groupby('day').agg({'tip': np.mean, 'day': np.size})
Out[20]:
tip day
day
Fri 2.734737 19
Sat 2.993103 87
Sun 3.255132 76
Thur 2.771452 62
Grouping by more than one column is done by passing a list of columns to the groupby() method.
SELECT smoker, day, COUNT(*), AVG(tip)
FROM tips
GROUP BY smoker, day;
/*
smoker day
No Fri 4 2.812500
Sat 45 3.102889
Sun 57 3.167895
Thur 45 2.673778
Yes Fri 15 2.714000
Sat 42 2.875476
Sun 19 3.516842
Thur 17 3.030000
*/
In [21]: tips.groupby(['smoker', 'day']).agg({'tip': [np.size, np.mean]})
Out[21]:
tip
size mean
smoker day
No Fri 4.0 2.812500
Sat 45.0 3.102889
Sun 57.0 3.167895
Thur 45.0 2.673778
Yes Fri 15.0 2.714000
Sat 42.0 2.875476
Sun 19.0 3.516842
Thur 17.0 3.030000
JOIN
JOINs can be performed with join() or merge(). By default, join() will join the DataFrames on their indices. Each method has parameters allowing you to specify the type of join to perform (LEFT, RIGHT, INNER, FULL) or the columns to join on (column names or indices).
In [22]: df1 = pd.DataFrame({'key': ['A', 'B', 'C', 'D'],
....: 'value': np.random.randn(4)})
....:
In [23]: df2 = pd.DataFrame({'key': ['B', 'D', 'D', 'E'],
....: 'value': np.random.randn(4)})
....:
Assume we have two database tables of the same name and structure as our DataFrames.
Now let’s go over the various types of JOINs.
INNER JOIN
SELECT *
FROM df1
INNER JOIN df2
ON df1.key = df2.key;
# merge performs an INNER JOIN by default
In [24]: pd.merge(df1, df2, on='key')
Out[24]:
key value_x value_y
0 B -0.282863 1.212112
1 D -1.135632 -0.173215
2 D -1.135632 0.119209
merge() also offers parameters for cases when you’d like to join one DataFrame’s column with another DataFrame’s index.
In [25]: indexed_df2 = df2.set_index('key')
In [26]: pd.merge(df1, indexed_df2, left_on='key', right_index=True)
Out[26]:
key value_x value_y
1 B -0.282863 1.212112
3 D -1.135632 -0.173215
3 D -1.135632 0.119209
LEFT OUTER JOIN
-- show all records from df1
SELECT *
FROM df1
LEFT OUTER JOIN df2
ON df1.key = df2.key;
# show all records from df1
In [27]: pd.merge(df1, df2, on='key', how='left')
Out[27]:
key value_x value_y
0 A 0.469112 NaN
1 B -0.282863 1.212112
2 C -1.509059 NaN
3 D -1.135632 -0.173215
4 D -1.135632 0.119209
RIGHT JOIN
-- show all records from df2
SELECT *
FROM df1
RIGHT OUTER JOIN df2
ON df1.key = df2.key;
# show all records from df2
In [28]: pd.merge(df1, df2, on='key', how='right')
Out[28]:
key value_x value_y
0 B -0.282863 1.212112
1 D -1.135632 -0.173215
2 D -1.135632 0.119209
3 E NaN -1.044236
FULL JOIN
pandas also allows for FULL JOINs, which display both sides of the dataset, whether or not the joined columns find a match. As of writing, FULL JOINs are not supported in all RDBMS (MySQL).
-- show all records from both tables
SELECT *
FROM df1
FULL OUTER JOIN df2
ON df1.key = df2.key;
# show all records from both frames
In [29]: pd.merge(df1, df2, on='key', how='outer')
Out[29]:
key value_x value_y
0 A 0.469112 NaN
1 B -0.282863 1.212112
2 C -1.509059 NaN
3 D -1.135632 -0.173215
4 D -1.135632 0.119209
5 E NaN -1.044236
UNION
UNION ALL can be performed using concat().
In [30]: df1 = pd.DataFrame({'city': ['Chicago', 'San Francisco', 'New York City'],
....: 'rank': range(1, 4)})
....:
In [31]: df2 = pd.DataFrame({'city': ['Chicago', 'Boston', 'Los Angeles'],
....: 'rank': [1, 4, 5]})
....:
SELECT city, rank
FROM df1
UNION ALL
SELECT city, rank
FROM df2;
/*
city rank
Chicago 1
San Francisco 2
New York City 3
Chicago 1
Boston 4
Los Angeles 5
*/
In [32]: pd.concat([df1, df2])
Out[32]:
city rank
0 Chicago 1
1 San Francisco 2
2 New York City 3
0 Chicago 1
1 Boston 4
2 Los Angeles 5
SQL’s UNION is similar to UNION ALL, however UNION will remove duplicate rows.
SELECT city, rank
FROM df1
UNION
SELECT city, rank
FROM df2;
-- notice that there is only one Chicago record this time
/*
city rank
Chicago 1
San Francisco 2
New York City 3
Boston 4
Los Angeles 5
*/
In pandas, you can use concat() in conjunction with drop_duplicates().
In [33]: pd.concat([df1, df2]).drop_duplicates() Out[33]: city rank 0 Chicago 1 1 San Francisco 2 2 New York City 3 1 Boston 4 2 Los Angeles 5
Pandas equivalents for some SQL analytic and aggregate functions
Top N rows with offset
-- MySQL
SELECT * FROM tips
ORDER BY tip DESC
LIMIT 10 OFFSET 5;
In [34]: tips.nlargest(10 + 5, columns='tip').tail(10)
Out[34]:
total_bill tip sex smoker day time size
183 23.17 6.50 Male Yes Sun Dinner 4
214 28.17 6.50 Female Yes Sat Dinner 3
47 32.40 6.00 Male No Sun Dinner 4
239 29.03 5.92 Male No Sat Dinner 3
88 24.71 5.85 Male No Thur Lunch 2
181 23.33 5.65 Male Yes Sun Dinner 2
44 30.40 5.60 Male No Sun Dinner 4
52 34.81 5.20 Female No Sun Dinner 4
85 34.83 5.17 Female No Thur Lunch 4
211 25.89 5.16 Male Yes Sat Dinner 4
Top N rows per group
-- Oracle's ROW_NUMBER() analytic function
SELECT * FROM (
SELECT
t.*,
ROW_NUMBER() OVER(PARTITION BY day ORDER BY total_bill DESC) AS rn
FROM tips t
)
WHERE rn < 3
ORDER BY day, rn;
In [35]: (tips.assign(rn=tips.sort_values(['total_bill'], ascending=False)
....: .groupby(['day'])
....: .cumcount() + 1)
....: .query('rn < 3')
....: .sort_values(['day', 'rn']))
....:
Out[35]:
total_bill tip sex smoker day time size rn
95 40.17 4.73 Male Yes Fri Dinner 4 1
90 28.97 3.00 Male Yes Fri Dinner 2 2
170 50.81 10.00 Male Yes Sat Dinner 3 1
212 48.33 9.00 Male No Sat Dinner 4 2
156 48.17 5.00 Male No Sun Dinner 6 1
182 45.35 3.50 Male Yes Sun Dinner 3 2
197 43.11 5.00 Female Yes Thur Lunch 4 1
142 41.19 5.00 Male No Thur Lunch 5 2
the same using rank(method=’first’) function
In [36]: (tips.assign(rnk=tips.groupby(['day'])['total_bill']
....: .rank(method='first', ascending=False))
....: .query('rnk < 3')
....: .sort_values(['day', 'rnk']))
....:
Out[36]:
total_bill tip sex smoker day time size rnk
95 40.17 4.73 Male Yes Fri Dinner 4 1.0
90 28.97 3.00 Male Yes Fri Dinner 2 2.0
170 50.81 10.00 Male Yes Sat Dinner 3 1.0
212 48.33 9.00 Male No Sat Dinner 4 2.0
156 48.17 5.00 Male No Sun Dinner 6 1.0
182 45.35 3.50 Male Yes Sun Dinner 3 2.0
197 43.11 5.00 Female Yes Thur Lunch 4 1.0
142 41.19 5.00 Male No Thur Lunch 5 2.0
-- Oracle's RANK() analytic function
SELECT * FROM (
SELECT
t.*,
RANK() OVER(PARTITION BY sex ORDER BY tip) AS rnk
FROM tips t
WHERE tip < 2
)
WHERE rnk < 3
ORDER BY sex, rnk;
Let’s find tips with (rank < 3) per gender group for (tips < 2). Notice that when using rank(method='min')
function rnk_min remains the same for the same tip (as Oracle’s RANK() function)
In [37]: (tips[tips['tip'] < 2]
....: .assign(rnk_min=tips.groupby(['sex'])['tip']
....: .rank(method='min'))
....: .query('rnk_min < 3')
....: .sort_values(['sex', 'rnk_min']))
....:
Out[37]:
total_bill tip sex smoker day time size rnk_min
67 3.07 1.00 Female Yes Sat Dinner 1 1.0
92 5.75 1.00 Female Yes Fri Dinner 2 1.0
111 7.25 1.00 Female No Sat Dinner 1 1.0
236 12.60 1.00 Male Yes Sat Dinner 2 1.0
237 32.83 1.17 Male Yes Sat Dinner 2 2.0
UPDATE
UPDATE tips
SET tip = tip*2
WHERE tip < 2;
In [38]: tips.loc[tips['tip'] < 2, 'tip'] *= 2
DELETE
DELETE FROM tips
WHERE tip > 9;
In pandas we select the rows that should remain, instead of deleting them
In [39]: tips = tips.loc[tips['tip'] <= 9]
Comparison with SAS
For potential users coming from SAS this page is meant to demonstrate how different SAS operations would be performed in pandas.
If you’re new to pandas, you might want to first read through 10 Minutes to pandas to familiarize yourself with the library.
As is customary, we import pandas and NumPy as follows:
In [1]: import pandas as pd
In [2]: import numpy as np
Note
Throughout this tutorial, the pandas DataFrame will be displayed by calling df.head(), which displays the first N (default 5) rows of the DataFrame. This is often used in interactive work (e.g. Jupyter notebook or terminal) - the equivalent in SAS would be:
proc print data=df(obs=5);
run;
Data Structures
General Terminology Translation
pandas | SAS |
---|---|
DataFrame | data set |
column | variable |
row | observation |
groupby | BY-group |
NaN | . |
DataFrame / Series
A DataFrame
in pandas is analogous to a SAS data set - a two-dimensional data source with labeled columns that can be of different types. As will be shown in this document, almost any operation that can be applied to a data set using SAS’s DATA
step, can also be accomplished in pandas.
A Series
is the data structure that represents one column of a DataFrame
. SAS doesn’t have a separate data structure for a single column, but in general, working with a Series
is analogous to referencing a column in the DATA
step.
Index
Every DataFrame
and Series
has an Index
- which are labels on the rows of the data. SAS does not have an exactly analogous concept. A data set’s rows are essentially unlabeled, other than an implicit integer index that can be accessed during the DATA step (_N_
).
In pandas, if no index is specified, an integer index is also used by default (first row = 0, second row = 1, and so on). While using a labeled Index
or MultiIndex
can enable sophisticated analyses and is ultimately an important part of pandas to understand, for this comparison we will essentially ignore the Index
and just treat the DataFrame
as a collection of columns. Please see the indexing documentation for much more on how to use an Index
effectively.
Data Input / Output
Constructing a DataFrame from Values
A SAS data set can be built from specified values by placing the data after a datalines
statement and specifying the column names.
data df;
input x y;
datalines;
1 2
3 4
5 6
;
run;
A pandas DataFrame
can be constructed in many different ways, but for a small number of values, it is often convenient to specify it as a Python dictionary, where the keys are the column names and the values are the data.
In [3]: df = pd.DataFrame({'x': [1, 3, 5], 'y': [2, 4, 6]})
In [4]: df
Out[4]:
x y
0 1 2
1 3 4
2 5 6
Reading External Data
Like SAS, pandas provides utilities for reading in data from many formats. The tips
dataset, found within the pandas tests (csv) will be used in many of the following examples.
SAS provides PROC IMPORT
to read csv data into a data set.
proc import datafile='tips.csv' dbms=csv out=tips replace;
getnames=yes;
run;
The pandas method is read_csv(), which works similarly.
In [5]: url = ('https://raw.github.com/pandas-dev/'
...: 'pandas/master/pandas/tests/data/tips.csv')
...:
In [6]: tips = pd.read_csv(url)
In [7]: tips.head()
Out[7]:
total_bill tip sex smoker day time size
0 16.99 1.01 Female No Sun Dinner 2
1 10.34 1.66 Male No Sun Dinner 3
2 21.01 3.50 Male No Sun Dinner 3
3 23.68 3.31 Male No Sun Dinner 2
4 24.59 3.61 Female No Sun Dinner 4
Like PROC
IMPORT
, read_csv
can take a number of parameters to specify how the data should be parsed. For example, if the data was instead tab delimited, and did not have column names, the pandas command would be:
tips = pd.read_csv('tips.csv', sep='\t', header=None)
# alternatively, read_table is an alias to read_csv with tab delimiter
tips = pd.read_table('tips.csv', header=None)
In addition to text/csv, pandas supports a variety of other data formats such as Excel, HDF5, and SQL databases. These are all read via a pd.read_*
function. See the IO documentation for more details.
Exporting Data
The inverse of PROC
IMPORT
in SAS is PROC
EXPORT
proc export data=tips outfile='tips2.csv' dbms=csv;
run;
Similarly in pandas, the opposite of read_csv
is to_csv(), and other data formats follow a similar api.
tips.to_csv('tips2.csv')
Data Operations
Operations on Columns
In the DATA step, arbitrary math expressions can be used on new or existing columns.
data tips;
set tips;
total_bill = total_bill - 2;
new_bill = total_bill / 2;
run;
pandas provides similar vectorized operations by specifying the individual Series
in the DataFrame
. New columns can be assigned in the same way.
In [8]: tips['total_bill'] = tips['total_bill'] - 2
In [9]: tips['new_bill'] = tips['total_bill'] / 2.0
In [10]: tips.head()
Out[10]:
total_bill tip sex smoker day time size new_bill
0 14.99 1.01 Female No Sun Dinner 2 7.495
1 8.34 1.66 Male No Sun Dinner 3 4.170
2 19.01 3.50 Male No Sun Dinner 3 9.505
3 21.68 3.31 Male No Sun Dinner 2 10.840
4 22.59 3.61 Female No Sun Dinner 4 11.295
Filtering
Filtering in SAS is done with an if
or where
statement, on one or more columns.
data tips;
set tips;
if total_bill > 10;
run;
data tips;
set tips;
where total_bill > 10;
/* equivalent in this case - where happens before the
DATA step begins and can also be used in PROC statements */
run;
DataFrames can be filtered in multiple ways; the most intuitive of which is using boolean indexing
In [11]: tips[tips['total_bill'] > 10].head()
Out[11]:
total_bill tip sex smoker day time size
0 14.99 1.01 Female No Sun Dinner 2
2 19.01 3.50 Male No Sun Dinner 3
3 21.68 3.31 Male No Sun Dinner 2
4 22.59 3.61 Female No Sun Dinner 4
5 23.29 4.71 Male No Sun Dinner 4
If/Then Logic
In SAS, if/then logic can be used to create new columns.
data tips;
set tips;
format bucket $4.;
if total_bill < 10 then bucket = 'low';
else bucket = 'high';
run;
The same operation in pandas can be accomplished using the where
method from numpy
.
In [12]: tips['bucket'] = np.where(tips['total_bill'] < 10, 'low', 'high')
In [13]: tips.head()
Out[13]:
total_bill tip sex smoker day time size bucket
0 14.99 1.01 Female No Sun Dinner 2 high
1 8.34 1.66 Male No Sun Dinner 3 low
2 19.01 3.50 Male No Sun Dinner 3 high
3 21.68 3.31 Male No Sun Dinner 2 high
4 22.59 3.61 Female No Sun Dinner 4 high
Date Functionality
SAS provides a variety of functions to do operations on date/datetime columns.
data tips;
set tips;
format date1 date2 date1_plusmonth mmddyy10.;
date1 = mdy(1, 15, 2013);
date2 = mdy(2, 15, 2015);
date1_year = year(date1);
date2_month = month(date2);
* shift date to beginning of next interval;
date1_next = intnx('MONTH', date1, 1);
* count intervals between dates;
months_between = intck('MONTH', date1, date2);
run;
The equivalent pandas operations are shown below. In addition to these functions pandas supports other Time Series features not available in Base SAS (such as resampling and custom offsets) - see the timeseries documentation for more details.
In [14]: tips['date1'] = pd.Timestamp('2013-01-15')
In [15]: tips['date2'] = pd.Timestamp('2015-02-15')
In [16]: tips['date1_year'] = tips['date1'].dt.year
In [17]: tips['date2_month'] = tips['date2'].dt.month
In [18]: tips['date1_next'] = tips['date1'] + pd.offsets.MonthBegin()
In [19]: tips['months_between'] = (
....: tips['date2'].dt.to_period('M') - tips['date1'].dt.to_period('M'))
....:
In [20]: tips[['date1', 'date2', 'date1_year', 'date2_month',
....: 'date1_next', 'months_between']].head()
....:
Out[20]:
date1 date2 date1_year date2_month date1_next months_between
0 2013-01-15 2015-02-15 2013 2 2013-02-01 <25 * MonthEnds>
1 2013-01-15 2015-02-15 2013 2 2013-02-01 <25 * MonthEnds>
2 2013-01-15 2015-02-15 2013 2 2013-02-01 <25 * MonthEnds>
3 2013-01-15 2015-02-15 2013 2 2013-02-01 <25 * MonthEnds>
4 2013-01-15 2015-02-15 2013 2 2013-02-01 <25 * MonthEnds>
Selection of Columns
SAS provides keywords in the DATA step to select, drop, and rename columns.
data tips;
set tips;
keep sex total_bill tip;
run;
data tips;
set tips;
drop sex;
run;
data tips;
set tips;
rename total_bill=total_bill_2;
run;
The same operations are expressed in pandas below.
# keep
In [21]: tips[['sex', 'total_bill', 'tip']].head()
Out[21]:
sex total_bill tip
0 Female 14.99 1.01
1 Male 8.34 1.66
2 Male 19.01 3.50
3 Male 21.68 3.31
4 Female 22.59 3.61
# drop
In [22]: tips.drop('sex', axis=1).head()
Out[22]:
total_bill tip smoker day time size
0 14.99 1.01 No Sun Dinner 2
1 8.34 1.66 No Sun Dinner 3
2 19.01 3.50 No Sun Dinner 3
3 21.68 3.31 No Sun Dinner 2
4 22.59 3.61 No Sun Dinner 4
# rename
In [23]: tips.rename(columns={'total_bill': 'total_bill_2'}).head()
Out[23]:
total_bill_2 tip sex smoker day time size
0 14.99 1.01 Female No Sun Dinner 2
1 8.34 1.66 Male No Sun Dinner 3
2 19.01 3.50 Male No Sun Dinner 3
3 21.68 3.31 Male No Sun Dinner 2
4 22.59 3.61 Female No Sun Dinner 4
Sorting by Values
Sorting in SAS is accomplished via PROC
SORT
proc sort data=tips;
by sex total_bill;
run;
pandas objects have a sort_values() method, which takes a list of columns to sort by.
In [24]: tips = tips.sort_values(['sex', 'total_bill'])
In [25]: tips.head()
Out[25]:
total_bill tip sex smoker day time size
67 1.07 1.00 Female Yes Sat Dinner 1
92 3.75 1.00 Female Yes Fri Dinner 2
111 5.25 1.00 Female No Sat Dinner 1
145 6.35 1.50 Female No Thur Lunch 2
135 6.51 1.25 Female No Thur Lunch 2
String Processing
Length
SAS determines the length of a character string with the LENGTHN and LENGTHC functions. LENGTHN excludes trailing blanks and LENGTHC includes trailing blanks.
data _null_;
set tips;
put(LENGTHN(time));
put(LENGTHC(time));
run;
Python determines the length of a character string with the len
function. len
includes trailing blanks. Use len
and rstrip
to exclude trailing blanks.
In [26]: tips['time'].str.len().head()
Out[26]:
67 6
92 6
111 6
145 5
135 5
Name: time, dtype: int64
In [27]: tips['time'].str.rstrip().str.len().head()
Out[27]:
67 6
92 6
111 6
145 5
135 5
Name: time, dtype: int64
Find
SAS determines the position of a character in a string with the FINDW function. FINDW
takes the string defined by the first argument and searches for the first position of the substring you supply as the second argument.
data _null_;
set tips;
put(FINDW(sex,'ale'));
run;
Python determines the position of a character in a string with the find
function. find
searches for the first position of the substring. If the substring is found, the function returns its position. Keep in mind that Python indexes are zero-based and the function will return -1 if it fails to find the substring.
In [28]: tips['sex'].str.find("ale").head()
Out[28]:
67 3
92 3
111 3
145 3
135 3
Name: sex, dtype: int64
Substring
SAS extracts a substring from a string based on its position with the SUBSTR function.
data _null_;
set tips;
put(substr(sex,1,1));
run;
With pandas you can use []
notation to extract a substring from a string by position locations. Keep in mind that Python indexes are zero-based.
In [29]: tips['sex'].str[0:1].head()
Out[29]:
67 F
92 F
111 F
145 F
135 F
Name: sex, dtype: object
Scan
The SAS SCAN function returns the nth word from a string. The first argument is the string you want to parse and the second argument specifies which word you want to extract.
data firstlast;
input String $60.;
First_Name = scan(string, 1);
Last_Name = scan(string, -1);
datalines2;
John Smith;
Jane Cook;
;;;
run;
Python extracts a substring from a string based on its text by using regular expressions. There are much more powerful approaches, but this just shows a simple approach.
In [30]: firstlast = pd.DataFrame({'String': ['John Smith', 'Jane Cook']})
In [31]: firstlast['First_Name'] = firstlast['String'].str.split(" ", expand=True)[0]
In [32]: firstlast['Last_Name'] = firstlast['String'].str.rsplit(" ", expand=True)[0]
In [33]: firstlast
Out[33]:
String First_Name Last_Name
0 John Smith John John
1 Jane Cook Jane Jane
Upcase, Lowcase, and Propcase
The SAS UPCASE LOWCASE and PROPCASE functions change the case of the argument.
data firstlast;
input String $60.;
string_up = UPCASE(string);
string_low = LOWCASE(string);
string_prop = PROPCASE(string);
datalines2;
John Smith;
Jane Cook;
;;;
run;
The equivalent Python functions are upper
, lower
, and title
.
In [34]: firstlast = pd.DataFrame({'String': ['John Smith', 'Jane Cook']})
In [35]: firstlast['string_up'] = firstlast['String'].str.upper()
In [36]: firstlast['string_low'] = firstlast['String'].str.lower()
In [37]: firstlast['string_prop'] = firstlast['String'].str.title()
In [38]: firstlast
Out[38]:
String string_up string_low string_prop
0 John Smith JOHN SMITH john smith John Smith
1 Jane Cook JANE COOK jane cook Jane Cook
Merging
The following tables will be used in the merge examples
In [39]: df1 = pd.DataFrame({'key': ['A', 'B', 'C', 'D'],
....: 'value': np.random.randn(4)})
....:
In [40]: df1
Out[40]:
key value
0 A 0.469112
1 B -0.282863
2 C -1.509059
3 D -1.135632
In [41]: df2 = pd.DataFrame({'key': ['B', 'D', 'D', 'E'],
....: 'value': np.random.randn(4)})
....:
In [42]: df2
Out[42]:
key value
0 B 1.212112
1 D -0.173215
2 D 0.119209
3 E -1.044236
In SAS, data must be explicitly sorted before merging. Different types of joins are accomplished using the in=
dummy variables to track whether a match was found in one or both input frames.
proc sort data=df1;
by key;
run;
proc sort data=df2;
by key;
run;
data left_join inner_join right_join outer_join;
merge df1(in=a) df2(in=b);
if a and b then output inner_join;
if a then output left_join;
if b then output right_join;
if a or b then output outer_join;
run;
pandas DataFrames have a merge() method, which provides similar functionality. Note that the data does not have to be sorted ahead of time, and different join types are accomplished via the how
keyword.
In [43]: inner_join = df1.merge(df2, on=['key'], how='inner')
In [44]: inner_join
Out[44]:
key value_x value_y
0 B -0.282863 1.212112
1 D -1.135632 -0.173215
2 D -1.135632 0.119209
In [45]: left_join = df1.merge(df2, on=['key'], how='left')
In [46]: left_join
Out[46]:
key value_x value_y
0 A 0.469112 NaN
1 B -0.282863 1.212112
2 C -1.509059 NaN
3 D -1.135632 -0.173215
4 D -1.135632 0.119209
In [47]: right_join = df1.merge(df2, on=['key'], how='right')
In [48]: right_join
Out[48]:
key value_x value_y
0 B -0.282863 1.212112
1 D -1.135632 -0.173215
2 D -1.135632 0.119209
3 E NaN -1.044236
In [49]: outer_join = df1.merge(df2, on=['key'], how='outer')
In [50]: outer_join
Out[50]:
key value_x value_y
0 A 0.469112 NaN
1 B -0.282863 1.212112
2 C -1.509059 NaN
3 D -1.135632 -0.173215
4 D -1.135632 0.119209
5 E NaN -1.044236
Missing Data
Like SAS, pandas has a representation for missing data - which is the special float value NaN
(not a number). Many of the semantics are the same, for example missing data propagates through numeric operations, and is ignored by default for aggregations.
In [51]: outer_join
Out[51]:
key value_x value_y
0 A 0.469112 NaN
1 B -0.282863 1.212112
2 C -1.509059 NaN
3 D -1.135632 -0.173215
4 D -1.135632 0.119209
5 E NaN -1.044236
In [52]: outer_join['value_x'] + outer_join['value_y']
Out[52]:
0 NaN
1 0.929249
2 NaN
3 -1.308847
4 -1.016424
5 NaN
dtype: float64
In [53]: outer_join['value_x'].sum()
Out[53]: -3.5940742896293765
One difference is that missing data cannot be compared to its sentinel value. For example, in SAS you could do this to filter missing values.
data outer_join_nulls;
set outer_join;
if value_x = .;
run;
data outer_join_no_nulls;
set outer_join;
if value_x ^= .;
run;
Which doesn’t work in pandas. Instead, the pd.isna
or pd.notna
functions should be used for comparisons.
In [54]: outer_join[pd.isna(outer_join['value_x'])]
Out[54]:
key value_x value_y
5 E NaN -1.044236
In [55]: outer_join[pd.notna(outer_join['value_x'])]
Out[55]:
key value_x value_y
0 A 0.469112 NaN
1 B -0.282863 1.212112
2 C -1.509059 NaN
3 D -1.135632 -0.173215
4 D -1.135632 0.119209
pandas also provides a variety of methods to work with missing data - some of which would be challenging to express in SAS. For example, there are methods to drop all rows with any missing values, replacing mi(ssing values with a specified value, like the mean, or forward filling from previous rows. See the missing data documentation for more.
In [56]: outer_join.dropna()
Out[56]:
key value_x value_y
1 B -0.282863 1.212112
3 D -1.135632 -0.173215
4 D -1.135632 0.119209
In [57]: outer_join.fillna(method='ffill')
Out[57]:
key value_x value_y
0 A 0.469112 NaN
1 B -0.282863 1.212112
2 C -1.509059 1.212112
3 D -1.135632 -0.173215
4 D -1.135632 0.119209
5 E -1.135632 -1.044236
In [58]: outer_join['value_x'].fillna(outer_join['value_x'].mean())
Out[58]:
0 0.469112
1 -0.282863
2 -1.509059
3 -1.135632
4 -1.135632
5 -0.718815
Name: value_x, dtype: float64
GroupBy
Aggregation
SAS’s PROC SUMMARY can be used to group by one or more key variables and compute aggregations on numeric columns.
proc summary data=tips nway;
class sex smoker;
var total_bill tip;
output out=tips_summed sum=;
run;
pandas provides a flexible groupby
mechanism that allows similar aggregations. See the groupby documentation for more details and examples.
In [59]: tips_summed = tips.groupby(['sex', 'smoker'])['total_bill', 'tip'].sum()
In [60]: tips_summed.head()
Out[60]:
total_bill tip
sex smoker
Female No 869.68 149.77
Yes 527.27 96.74
Male No 1725.75 302.00
Yes 1217.07 183.07
Transformation
In SAS, if the group aggregations need to be used with the original frame, it must be merged back together. For example, to subtract the mean for each observation by smoker group.
proc summary data=tips missing nway;
class smoker;
var total_bill;
output out=smoker_means mean(total_bill)=group_bill;
run;
proc sort data=tips;
by smoker;
run;
data tips;
merge tips(in=a) smoker_means(in=b);
by smoker;
adj_total_bill = total_bill - group_bill;
if a and b;
run;
pandas groubpy
provides a transform
mechanism that allows these type of operations to be succinctly expressed in one operation.
In [61]: gb = tips.groupby('smoker')['total_bill']
In [62]: tips['adj_total_bill'] = tips['total_bill'] - gb.transform('mean')
In [63]: tips.head()
Out[63]:
total_bill tip sex smoker day time size adj_total_bill
67 1.07 1.00 Female Yes Sat Dinner 1 -17.686344
92 3.75 1.00 Female Yes Fri Dinner 2 -15.006344
111 5.25 1.00 Female No Sat Dinner 1 -11.938278
145 6.35 1.50 Female No Thur Lunch 2 -10.838278
135 6.51 1.25 Female No Thur Lunch 2 -10.678278
By Group Processing
In addition to aggregation, pandas groupby
can be used to replicate most other by group processing from SAS. For example, this DATA
step reads the data by sex/smoker group and filters to the first entry for each.
proc sort data=tips;
by sex smoker;
run;
data tips_first;
set tips;
by sex smoker;
if FIRST.sex or FIRST.smoker then output;
run;
In pandas this would be written as:
In [64]: tips.groupby(['sex', 'smoker']).first()
Out[64]:
total_bill tip day time size adj_total_bill
sex smoker
Female No 5.25 1.00 Sat Dinner 1 -11.938278
Yes 1.07 1.00 Sat Dinner 1 -17.686344
Male No 5.51 2.00 Thur Lunch 2 -11.678278
Yes 5.25 5.15 Sun Dinner 2 -13.506344
Other Considerations
Disk vs Memory
pandas operates exclusively in memory, where a SAS data set exists on disk. This means that the size of data able to be loaded in pandas is limited by your machine’s memory, but also that the operations on that data may be faster.
If out of core processing is needed, one possibility is the dask.dataframe library (currently in development) which provides a subset of pandas functionality for an on-disk DataFrame
Data Interop
pandas provides a read_sas() method that can read SAS data saved in the XPORT or SAS7BDAT binary format.
libname xportout xport 'transport-file.xpt';
data xportout.tips;
set tips(rename=(total_bill=tbill));
* xport variable names limited to 6 characters;
run;
df = pd.read_sas('transport-file.xpt')
df = pd.read_sas('binary-file.sas7bdat')
You can also specify the file format directly. By default, pandas will try to infer the file format based on its extension.
df = pd.read_sas('transport-file.xpt', format='xport')
df = pd.read_sas('binary-file.sas7bdat', format='sas7bdat')
XPORT is a relatively limited format and the parsing of it is not as optimized as some of the other pandas readers. An alternative way to interop data between SAS and pandas is to serialize to csv.
# version 0.17, 10M rows
In [8]: %time df = pd.read_sas('big.xpt')
Wall time: 14.6 s
In [9]: %time df = pd.read_csv('big.csv')
Wall time: 4.86 s
Comparison with Stata
For potential users coming from Stata this page is meant to demonstrate how different Stata operations would be performed in pandas.
If you’re new to pandas, you might want to first read through 10 Minutes to pandas to familiarize yourself with the library.
As is customary, we import pandas and NumPy as follows. This means that we can refer to the libraries as pd
and np
, respectively, for the rest of the document.
In [1]: import pandas as pd
In [2]: import numpy as np
Note
Throughout this tutorial, the pandas DataFrame
will be displayed by calling df.head()
, which displays the first N (default 5) rows of the DataFrame
. This is often used in interactive work (e.g. Jupyter notebook or terminal) – the equivalent in Stata would be:
list in 1/5
Data Structures
General Terminology Translation
pandas | Stata |
---|---|
DataFrame | data set |
column | variable |
row | observation |
groupby | bysort |
NaN | . |
DataFrame / Series
A DataFrame
in pandas is analogous to a Stata data set – a two-dimensional data source with labeled columns that can be of different types. As will be shown in this document, almost any operation that can be applied to a data set in Stata can also be accomplished in pandas.
A Series
is the data structure that represents one column of a DataFrame
. Stata doesn’t have a separate data structure for a single column, but in general, working with a Series
is analogous to referencing a column of a data set in Stata.
Index
Every DataFrame
and Series
has an Index
– labels on the rows of the data. Stata does not have an exactly analogous concept. In Stata, a data set’s rows are essentially unlabeled, other than an implicit integer index that can be accessed with _n
.
In pandas, if no index is specified, an integer index is also used by default (first row = 0, second row = 1, and so on). While using a labeled Index
or MultiIndex
can enable sophisticated analyses and is ultimately an important part of pandas to understand, for this comparison we will essentially ignore the Index
and just treat the DataFrame
as a collection of columns. Please see the indexing documentation for much more on how to use an Index
effectively.
Data Input / Output
Constructing a DataFrame from Values
A Stata data set can be built from specified values by placing the data after an input
statement and specifying the column names.
input x y
1 2
3 4
5 6
end
A pandas DataFrame
can be constructed in many different ways, but for a small number of values, it is often convenient to specify it as a Python dictionary, where the keys are the column names and the values are the data.
In [3]: df = pd.DataFrame({'x': [1, 3, 5], 'y': [2, 4, 6]})
In [4]: df
Out[4]:
x y
0 1 2
1 3 4
2 5 6
Reading External Data
Like Stata, pandas provides utilities for reading in data from many formats. The tips
data set, found within the pandas tests (csv) will be used in many of the following examples.
Stata provides import
delimited
to read csv data into a data set in memory. If the tips.csv
file is in the current working directory, we can import it as follows.
import delimited tips.csv
The pandas method is read_csv(), which works similarly. Additionally, it will automatically download the data set if presented with a url.
In [5]: url = ('https://raw.github.com/pandas-dev'
...: '/pandas/master/pandas/tests/data/tips.csv')
...:
In [6]: tips = pd.read_csv(url)
In [7]: tips.head()
Out[7]:
total_bill tip sex smoker day time size
0 16.99 1.01 Female No Sun Dinner 2
1 10.34 1.66 Male No Sun Dinner 3
2 21.01 3.50 Male No Sun Dinner 3
3 23.68 3.31 Male No Sun Dinner 2
4 24.59 3.61 Female No Sun Dinner 4
Like import
delimited
, read_csv() can take a number of parameters to specify how the data should be parsed. For example, if the data were instead tab delimited, did not have column names, and existed in the current working directory, the pandas command would be:
tips = pd.read_csv('tips.csv', sep='\t', header=None)
# alternatively, read_table is an alias to read_csv with tab delimiter
tips = pd.read_table('tips.csv', header=None)
Pandas can also read Stata data sets in .dta
format with the read_stata() function.
df = pd.read_stata('data.dta')
In addition to text/csv and Stata files, pandas supports a variety of other data formats such as Excel, SAS, HDF5, Parquet, and SQL databases. These are all read via a pd.read_*
function. See the IO documentation for more details.
Exporting Data
The inverse of import
delimited
in Stata is export
delimited
export delimited tips2.csv
Similarly in pandas, the opposite of read_csv
is DataFrame.to_csv().
tips.to_csv('tips2.csv')
Pandas can also export to Stata file format with the DataFrame.to_stata() method.
tips.to_stata('tips2.dta')
Data Operations
Operations on Columns
In Stata, arbitrary math expressions can be used with the generate
and replace
commands on new or existing columns. The drop command drops the column from the data set.
replace total_bill = total_bill - 2
generate new_bill = total_bill / 2
drop new_bill
pandas provides similar vectorized operations by specifying the individual Series
in the DataFrame
. New columns can be assigned in the same way. The DataFrame.drop() method drops a column from the DataFrame
.
In [8]: tips['total_bill'] = tips['total_bill'] - 2
In [9]: tips['new_bill'] = tips['total_bill'] / 2
In [10]: tips.head()
Out[10]:
total_bill tip sex smoker day time size new_bill
0 14.99 1.01 Female No Sun Dinner 2 7.495
1 8.34 1.66 Male No Sun Dinner 3 4.170
2 19.01 3.50 Male No Sun Dinner 3 9.505
3 21.68 3.31 Male No Sun Dinner 2 10.840
4 22.59 3.61 Female No Sun Dinner 4 11.295
In [11]: tips = tips.drop('new_bill', axis=1)
Filtering
Filtering in Stata is done with an if clause on one or more columns.
list if total_bill > 10
DataFrames can be filtered in multiple ways; the most intuitive of which is using boolean indexing.
In [12]: tips[tips['total_bill'] > 10].head()
Out[12]:
total_bill tip sex smoker day time size
0 14.99 1.01 Female No Sun Dinner 2
2 19.01 3.50 Male No Sun Dinner 3
3 21.68 3.31 Male No Sun Dinner 2
4 22.59 3.61 Female No Sun Dinner 4
5 23.29 4.71 Male No Sun Dinner 4
If/Then Logic
In Stata, an if
clause can also be used to create new columns.
generate bucket = "low" if total_bill < 10
replace bucket = "high" if total_bill >= 10
The same operation in pandas can be accomplished using the where
method from numpy
.
In [13]: tips['bucket'] = np.where(tips['total_bill'] < 10, 'low', 'high')
In [14]: tips.head()
Out[14]:
total_bill tip sex smoker day time size bucket
0 14.99 1.01 Female No Sun Dinner 2 high
1 8.34 1.66 Male No Sun Dinner 3 low
2 19.01 3.50 Male No Sun Dinner 3 high
3 21.68 3.31 Male No Sun Dinner 2 high
4 22.59 3.61 Female No Sun Dinner 4 high
Date Functionality
Stata provides a variety of functions to do operations on date/datetime columns.
generate date1 = mdy(1, 15, 2013)
generate date2 = date("Feb152015", "MDY")
generate date1_year = year(date1)
generate date2_month = month(date2)
* shift date to beginning of next month
generate date1_next = mdy(month(date1) + 1, 1, year(date1)) if month(date1) != 12
replace date1_next = mdy(1, 1, year(date1) + 1) if month(date1) == 12
generate months_between = mofd(date2) - mofd(date1)
list date1 date2 date1_year date2_month date1_next months_between
The equivalent pandas operations are shown below. In addition to these functions, pandas supports other Time Series features not available in Stata (such as time zone handling and custom offsets) – see the timeseries documentation for more details.
In [15]: tips['date1'] = pd.Timestamp('2013-01-15')
In [16]: tips['date2'] = pd.Timestamp('2015-02-15')
In [17]: tips['date1_year'] = tips['date1'].dt.year
In [18]: tips['date2_month'] = tips['date2'].dt.month
In [19]: tips['date1_next'] = tips['date1'] + pd.offsets.MonthBegin()
In [20]: tips['months_between'] = (tips['date2'].dt.to_period('M')
....: - tips['date1'].dt.to_period('M'))
....:
In [21]: tips[['date1', 'date2', 'date1_year', 'date2_month', 'date1_next',
....: 'months_between']].head()
....:
Out[21]:
date1 date2 date1_year date2_month date1_next months_between
0 2013-01-15 2015-02-15 2013 2 2013-02-01 <25 * MonthEnds>
1 2013-01-15 2015-02-15 2013 2 2013-02-01 <25 * MonthEnds>
2 2013-01-15 2015-02-15 2013 2 2013-02-01 <25 * MonthEnds>
3 2013-01-15 2015-02-15 2013 2 2013-02-01 <25 * MonthEnds>
4 2013-01-15 2015-02-15 2013 2 2013-02-01 <25 * MonthEnds>
Selection of Columns
Stata provides keywords to select, drop, and rename columns.
keep sex total_bill tip
drop sex
rename total_bill total_bill_2
The same operations are expressed in pandas below. Note that in contrast to Stata, these operations do not happen in place. To make these changes persist, assign the operation back to a variable.
# keep
In [22]: tips[['sex', 'total_bill', 'tip']].head()
Out[22]:
sex total_bill tip
0 Female 14.99 1.01
1 Male 8.34 1.66
2 Male 19.01 3.50
3 Male 21.68 3.31
4 Female 22.59 3.61
# drop
In [23]: tips.drop('sex', axis=1).head()
Out[23]:
total_bill tip smoker day time size
0 14.99 1.01 No Sun Dinner 2
1 8.34 1.66 No Sun Dinner 3
2 19.01 3.50 No Sun Dinner 3
3 21.68 3.31 No Sun Dinner 2
4 22.59 3.61 No Sun Dinner 4
# rename
In [24]: tips.rename(columns={'total_bill': 'total_bill_2'}).head()
Out[24]:
total_bill_2 tip sex smoker day time size
0 14.99 1.01 Female No Sun Dinner 2
1 8.34 1.66 Male No Sun Dinner 3
2 19.01 3.50 Male No Sun Dinner 3
3 21.68 3.31 Male No Sun Dinner 2
4 22.59 3.61 Female No Sun Dinner 4
Sorting by Values
Sorting in Stata is accomplished via sort
sort sex total_bill
pandas objects have a DataFrame.sort_values() method, which takes a list of columns to sort by.
In [25]: tips = tips.sort_values(['sex', 'total_bill'])
In [26]: tips.head()
Out[26]:
total_bill tip sex smoker day time size
67 1.07 1.00 Female Yes Sat Dinner 1
92 3.75 1.00 Female Yes Fri Dinner 2
111 5.25 1.00 Female No Sat Dinner 1
145 6.35 1.50 Female No Thur Lunch 2
135 6.51 1.25 Female No Thur Lunch 2
String Processing
Finding Length of String
Stata determines the length of a character string with the strlen()
and ustrlen()
functions for ASCII and Unicode strings, respectively.
generate strlen_time = strlen(time)
generate ustrlen_time = ustrlen(time)
Python determines the length of a character string with the len function. In Python 3, all strings are Unicode strings. len
includes trailing blanks. Use len
and rstrip
to exclude trailing blanks.
In [27]: tips['time'].str.len().head()
Out[27]:
67 6
92 6
111 6
145 5
135 5
Name: time, dtype: int64
In [28]: tips['time'].str.rstrip().str.len().head()
Out[28]:
67 6
92 6
111 6
145 5
135 5
Name: time, dtype: int64
Finding Position of Substring
Stata determines the position of a character in a string with the strpos()
function. This takes the string defined by the first argument and searches for the first position of the substring you supply as the second argument.
generate str_position = strpos(sex, "ale")
Python determines the position of a character in a string with the find()
function. find
searches for the first position of the substring. If the substring is found, the function returns its position. Keep in mind that Python indexes are zero-based and the function will return -1 if it fails to find the substring.
In [29]: tips['sex'].str.find("ale").head()
Out[29]:
67 3
92 3
111 3
145 3
135 3
Name: sex, dtype: int64
Extracting Substring by Position
Stata extracts a substring from a string based on its position with the substr()
function.
generate short_sex = substr(sex, 1, 1)
With pandas you can use []
notation to extract a substring from a string by position locations. Keep in mind that Python indexes are zero-based.
In [30]: tips['sex'].str[0:1].head()
Out[30]:
67 F
92 F
111 F
145 F
135 F
Name: sex, dtype: object
Extracting nth Word
The Stata word()
function returns the nth word from a string. The first argument is the string you want to parse and the second argument specifies which word you want to extract.
clear
input str20 string
"John Smith"
"Jane Cook"
end
generate first_name = word(name, 1)
generate last_name = word(name, -1)
Python extracts a substring from a string based on its text by using regular expressions. There are much more powerful approaches, but this just shows a simple approach.
In [31]: firstlast = pd.DataFrame({'string': ['John Smith', 'Jane Cook']})
In [32]: firstlast['First_Name'] = firstlast['string'].str.split(" ", expand=True)[0]
In [33]: firstlast['Last_Name'] = firstlast['string'].str.rsplit(" ", expand=True)[0]
In [34]: firstlast
Out[34]:
string First_Name Last_Name
0 John Smith John John
1 Jane Cook Jane Jane
Changing Case
The Stata strupper()
, strlower()
, strproper()
, ustrupper()
, ustrlower()
, and ustrtitle()
functions change the case of ASCII and Unicode strings, respectively.
clear
input str20 string
"John Smith"
"Jane Cook"
end
generate upper = strupper(string)
generate lower = strlower(string)
generate title = strproper(string)
list
The equivalent Python functions are upper
, lower
, and title
.
In [35]: firstlast = pd.DataFrame({'string': ['John Smith', 'Jane Cook']})
In [36]: firstlast['upper'] = firstlast['string'].str.upper()
In [37]: firstlast['lower'] = firstlast['string'].str.lower()
In [38]: firstlast['title'] = firstlast['string'].str.title()
In [39]: firstlast
Out[39]:
string upper lower title
0 John Smith JOHN SMITH john smith John Smith
1 Jane Cook JANE COOK jane cook Jane Cook
Merging
The following tables will be used in the merge examples
In [40]: df1 = pd.DataFrame({'key': ['A', 'B', 'C', 'D'],
....: 'value': np.random.randn(4)})
....:
In [41]: df1
Out[41]:
key value
0 A 0.469112
1 B -0.282863
2 C -1.509059
3 D -1.135632
In [42]: df2 = pd.DataFrame({'key': ['B', 'D', 'D', 'E'],
....: 'value': np.random.randn(4)})
....:
In [43]: df2
Out[43]:
key value
0 B 1.212112
1 D -0.173215
2 D 0.119209
3 E -1.044236
In Stata, to perform a merge, one data set must be in memory and the other must be referenced as a file name on disk. In contrast, Python must have both DataFrames
already in memory.
By default, Stata performs an outer join, where all observations from both data sets are left in memory after the merge. One can keep only observations from the initial data set, the merged data set, or the intersection of the two by using the values created in the _merge
variable.
* First create df2 and save to disk
clear
input str1 key
B
D
D
E
end
generate value = rnormal()
save df2.dta
* Now create df1 in memory
clear
input str1 key
A
B
C
D
end
generate value = rnormal()
preserve
* Left join
merge 1:n key using df2.dta
keep if _merge == 1
* Right join
restore, preserve
merge 1:n key using df2.dta
keep if _merge == 2
* Inner join
restore, preserve
merge 1:n key using df2.dta
keep if _merge == 3
* Outer join
restore
merge 1:n key using df2.dta
pandas DataFrames have a DataFrame.merge() method, which provides similar functionality. Note that different join types are accomplished via the how
keyword.
In [44]: inner_join = df1.merge(df2, on=['key'], how='inner')
In [45]: inner_join
Out[45]:
key value_x value_y
0 B -0.282863 1.212112
1 D -1.135632 -0.173215
2 D -1.135632 0.119209
In [46]: left_join = df1.merge(df2, on=['key'], how='left')
In [47]: left_join
Out[47]:
key value_x value_y
0 A 0.469112 NaN
1 B -0.282863 1.212112
2 C -1.509059 NaN
3 D -1.135632 -0.173215
4 D -1.135632 0.119209
In [48]: right_join = df1.merge(df2, on=['key'], how='right')
In [49]: right_join
Out[49]:
key value_x value_y
0 B -0.282863 1.212112
1 D -1.135632 -0.173215
2 D -1.135632 0.119209
3 E NaN -1.044236
In [50]: outer_join = df1.merge(df2, on=['key'], how='outer')
In [51]: outer_join
Out[51]:
key value_x value_y
0 A 0.469112 NaN
1 B -0.282863 1.212112
2 C -1.509059 NaN
3 D -1.135632 -0.173215
4 D -1.135632 0.119209
5 E NaN -1.044236
Missing Data
Like Stata, pandas has a representation for missing data – the special float value NaN
(not a number). Many of the semantics are the same; for example missing data propagates through numeric operations, and is ignored by default for aggregations.
In [52]: outer_join
Out[52]:
key value_x value_y
0 A 0.469112 NaN
1 B -0.282863 1.212112
2 C -1.509059 NaN
3 D -1.135632 -0.173215
4 D -1.135632 0.119209
5 E NaN -1.044236
In [53]: outer_join['value_x'] + outer_join['value_y']
Out[53]:
0 NaN
1 0.929249
2 NaN
3 -1.308847
4 -1.016424
5 NaN
dtype: float64
In [54]: outer_join['value_x'].sum()
Out[54]: -3.5940742896293765
One difference is that missing data cannot be compared to its sentinel value. For example, in Stata you could do this to filter missing values.
* Keep missing values
list if value_x == .
* Keep non-missing values
list if value_x != .
This doesn’t work in pandas. Instead, the pd.isna()
or pd.notna()
functions should be used for comparisons.
In [55]: outer_join[pd.isna(outer_join['value_x'])]
Out[55]:
key value_x value_y
5 E NaN -1.044236
In [56]: outer_join[pd.notna(outer_join['value_x'])]
Out[56]:
key value_x value_y
0 A 0.469112 NaN
1 B -0.282863 1.212112
2 C -1.509059 NaN
3 D -1.135632 -0.173215
4 D -1.135632 0.119209
Pandas also provides a variety of methods to work with missing data – some of which would be challenging to express in Stata. For example, there are methods to drop all rows with any missing values, replacing missing values with a specified value, like the mean, or forward filling from previous rows. See the missing data documentation for more.
# Drop rows with any missing value
In [57]: outer_join.dropna()
Out[57]:
key value_x value_y
1 B -0.282863 1.212112
3 D -1.135632 -0.173215
4 D -1.135632 0.119209
# Fill forwards
In [58]: outer_join.fillna(method='ffill')
Out[58]:
key value_x value_y
0 A 0.469112 NaN
1 B -0.282863 1.212112
2 C -1.509059 1.212112
3 D -1.135632 -0.173215
4 D -1.135632 0.119209
5 E -1.135632 -1.044236
# Impute missing values with the mean
In [59]: outer_join['value_x'].fillna(outer_join['value_x'].mean())
Out[59]:
0 0.469112
1 -0.282863
2 -1.509059
3 -1.135632
4 -1.135632
5 -0.718815
Name: value_x, dtype: float64
GroupBy
Aggregation
Stata’s collapse
can be used to group by one or more key variables and compute aggregations on numeric columns.
collapse (sum) total_bill tip, by(sex smoker)
pandas provides a flexible groupby
mechanism that allows similar aggregations. See the groupby documentation for more details and examples.
In [60]: tips_summed = tips.groupby(['sex', 'smoker'])['total_bill', 'tip'].sum()
In [61]: tips_summed.head()
Out[61]:
total_bill tip
sex smoker
Female No 869.68 149.77
Yes 527.27 96.74
Male No 1725.75 302.00
Yes 1217.07 183.07
Transformation
In Stata, if the group aggregations need to be used with the original data set, one would usually use bysort
with egen()
. For example, to subtract the mean for each observation by smoker group.
bysort sex smoker: egen group_bill = mean(total_bill)
generate adj_total_bill = total_bill - group_bill
pandas groubpy
provides a transform
mechanism that allows these type of operations to be succinctly expressed in one operation.
In [62]: gb = tips.groupby('smoker')['total_bill']
In [63]: tips['adj_total_bill'] = tips['total_bill'] - gb.transform('mean')
In [64]: tips.head()
Out[64]:
total_bill tip sex smoker day time size adj_total_bill
67 1.07 1.00 Female Yes Sat Dinner 1 -17.686344
92 3.75 1.00 Female Yes Fri Dinner 2 -15.006344
111 5.25 1.00 Female No Sat Dinner 1 -11.938278
145 6.35 1.50 Female No Thur Lunch 2 -10.838278
135 6.51 1.25 Female No Thur Lunch 2 -10.678278
By Group Processing
In addition to aggregation, pandas groupby
can be used to replicate most other bysort
processing from Stata. For example, the following example lists the first observation in the current sort order by sex/smoker group.
bysort sex smoker: list if _n == 1
In pandas this would be written as:
In [65]: tips.groupby(['sex', 'smoker']).first()
Out[65]:
total_bill tip day time size adj_total_bill
sex smoker
Female No 5.25 1.00 Sat Dinner 1 -11.938278
Yes 1.07 1.00 Sat Dinner 1 -17.686344
Male No 5.51 2.00 Thur Lunch 2 -11.678278
Yes 5.25 5.15 Sun Dinner 2 -13.506344
Other Considerations
Disk vs Memory
Pandas and Stata both operate exclusively in memory. This means that the size of data able to be loaded in pandas is limited by your machine’s memory. If out of core processing is needed, one possibility is the dask.dataframe library, which provides a subset of pandas functionality for an on-disk DataFrame
.